Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.511
Filtrar
1.
FASEB J ; 38(5): e23526, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430456

RESUMO

Germ cell development depends on the capacity of somatic Sertoli cells to undergo differentiation into a mature state and establish a germ cell-specific blood-testis barrier (BTB). The BTB structure confers an immunological barrier for meiotic and postmeiotic germ cells, and its dynamic permeability facilitates a transient movement of preleptotene spermatocytes through BTB to enter meiosis. However, the regulatory factors involved in Sertoli cell maturation and how BTB dynamics coordinate germ cell development remain unclear. Here, we found a histone deacetylase HDAC3 abundantly expresses in Sertoli cells and localizes in both cytoplasm and nucleus. Sertoli cell-specific Hdac3 knockout in mice causes infertility with compromised integrity of blood-testis barrier, leading to germ cells unable to traverse through BTB and an accumulation of preleptotene spermatocytes in juvenile testis. Mechanistically, nuclear HDAC3 regulates the expression program of Sertoli cell maturation genes, and cytoplasmic HDAC3 forms a complex with the gap junction protein Connexin 43 to modulate the BTB integrity and dynamics through regulating the distribution of tight junction proteins. Our findings identify HDAC3 as a critical regulator in promoting Sertoli cell maturation and maintaining the homeostasis of the blood-testis barrier.


Assuntos
Barreira Hematotesticular , Histona Desacetilases , Células de Sertoli , Animais , Masculino , Camundongos , Barreira Hematotesticular/metabolismo , Diferenciação Celular , Células de Sertoli/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Junções Íntimas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
2.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372383

RESUMO

Male meiotic division exhibits two consecutive chromosome separation events without apparent pausing. Several studies have shown that spermatocyte divisions are not stringently regulated as in mitotic cells. In this study, we investigated the role of the canonical spindle assembly (SAC) pathway in Caenorhabditis elegans spermatogenesis. We found the intensity of chromosome-associated outer kinetochore protein BUB-1 and SAC effector MDF-1 oscillates between the two divisions. However, the SAC target securin is degraded during the first division and remains undetectable for the second division. Inhibition of proteasome-dependent protein degradation did not affect the progression of the second division but stopped the first division at metaphase. Perturbation of spindle integrity did not affect the duration of meiosis II, and only slightly lengthened meiosis I. Our results demonstrate that male meiosis II is independent of SAC regulation, and male meiosis I exhibits only weak checkpoint response.


Assuntos
Caenorhabditis elegans , Fuso Acromático , Animais , Masculino , Caenorhabditis elegans/metabolismo , Fuso Acromático/metabolismo , Espermatócitos/metabolismo , Meiose , Cinetocoros/metabolismo , Segregação de Cromossomos , Espermatogênese , Oócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Reprod Fertil Dev ; 362024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301353

RESUMO

Context The varicocele is the leading cause of male infertility and can impair sperm quality and testicular function through various mechanisms. In our previous study, we found that lycopene could attenuate hypoxia-induced testicular injury. Aims To illustrate the detailed mechanism of lycopene on spermatocytes. Methods The effect of lycopene on GC-2 cells under hypoxia were detected by flow cytometry and western blot assay. miR-seq was used to determine miRNA expression in varicocele rat model testes. The function of miR-23a/b were determined by flow cytometry and western blot assay. Key results We demonstrate that lycopene could alleviate hypoxia-induced GC-2 cell apoptosis and could elevate miR-23a/b expression of the hypoxia model in vivo and in vitro . The miR-23a and -23b mimics could reduce the hypoxia-induced GC-2 cell apoptosis. Both miR-23a and -23b could directly bind with prokineticin 2 (PROK2) mRNA and downregulate its expression. Conclusions Lycopene could attenuate hypoxia-induced spermatocyte injury through the miR-23a/b-PROK2 pathway. Implications Lycopene may be an effective treatment for varicocele to improve testicular impairment.


Assuntos
Hormônios Gastrointestinais , Licopeno , MicroRNAs , Neuropeptídeos , Varicocele , Animais , Humanos , Masculino , Camundongos , Ratos , Apoptose , Regulação para Baixo , Hormônios Gastrointestinais/farmacologia , Hipóxia/genética , Licopeno/farmacologia , MicroRNAs/metabolismo , Neuropeptídeos/metabolismo , Sêmen/metabolismo , Espermatócitos/metabolismo , Varicocele/genética
4.
Cell Rep ; 43(1): 113651, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175751

RESUMO

Dynamic chromosome remodeling and nuclear compartmentalization take place during mammalian meiotic prophase I. We report here that the crucial roles of male pachynema-specific protein (MAPS) in pachynema progression might be mediated by its liquid-liquid phase separation in vitro and in cellulo. MAPS forms distinguishable liquid phases, and deletion or mutations of its N-terminal amino acids (aa) 2-9 disrupt its secondary structure and charge properties, impeding phase separation. Maps-/- pachytene spermatocytes exhibit defects in nucleus compartmentalization, including defects in forming sex bodies, altered nucleosome composition, and disordered chromatin accessibility. MapsΔ2-9/Δ2-9 male mice expressing MAPS protein lacking aa 2-9 phenocopy Maps-/- mice. Moreover, a frameshift mutation in C3orf62, the human counterpart of Maps, is correlated with nonobstructive azoospermia in a patient exhibiting pachynema arrest in spermatocyte development. Hence, the phase separation property of MAPS seems essential for pachynema progression in mouse and human spermatocytes.


Assuntos
Cromatina , Meiose , Humanos , Masculino , Camundongos , Animais , Cromatina/metabolismo , Estágio Paquíteno , 60422 , Prófase Meiótica I , Espermatócitos/metabolismo , Mamíferos/genética
5.
J Environ Sci (China) ; 138: 531-542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135418

RESUMO

The environmental presence of decabromodiphenyl ether (BDE-209), which is toxic to the male reproductive system, is widespread. The current study investigated its mechanism of toxicity in mice. The results showed, that BDE-209 induced DNA damage, decreased the expression of the promoter of meiosis spermatogenesis- and oogenesis-specific basic helix-loop-helix 1 (Sohlh1), meiosis related-factors Lethal (3) malignant brain tumor like 2 (L3MBTL2), PIWI-like protein 2 (MILI), Cyclin-dependent kinase 2 (CDK2), Cyclin A, synaptonemal complex protein 1 (SYCP1) and synaptonemal complex protein 3 (SYCP3), and caused spermatogenic cell apoptosis, resulting in a decrease in sperm quantity and quality. Furthermore, BDE-209 downregulated the levels of anaphase-promoting complex/cyclosome (APC/C), increased the expression of PIWI-like protein 1 (MIWI) in the cytoplasm of elongating spermatids, and decreased the nuclear levels of RING finger protein 8 (RNF8), ubiquitinated (ub)-H2A/ub-H2B, and Protamine 1 (PRM1)/Protamine 2 (PRM2), while increasing H2A/H2B nuclear levels in spermatids. The reproductive toxicity was persistent for 50 days following the withdrawal of BDE-209 exposure. The results suggested that BDE-209 inhibits the initiation of meiosis by decreasing the expression of Sohlh1. Furthermore, the reduced expression of L3MBTL2 inhibited the formation of chromosomal synaptonemal complexes by depressing the expression of meiosis regulators affecting the meiotic progression and also inhibited histone ubiquitination preventing the replacement of histones by protamines, by preventing RNF8 from entering nuclei, which affected the evolution of spermatids into mature sperm.


Assuntos
Espermátides , Espermatócitos , Masculino , Camundongos , Animais , Espermátides/metabolismo , Espermatócitos/metabolismo , Sêmen , Cromossomos
6.
FASEB J ; 38(1): e23376, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112167

RESUMO

Male germ cell development is dependent on the orchestrated regulation of gene networks. TATA-box binding protein associated factors (TAFs) facilitate interactions of TATA-binding protein with the TATA element, which is known to coordinate gene transcription during organogenesis. TAF7 like (Taf7l) is situated on the X chromosome and has been implicated in testis development. We examined the biology of TAF7L in testis development using the rat. Taf7l was prominently expressed in preleptotene to leptotene spermatocytes. To study the impact of TAF7L on the testis we generated a global loss-of-function rat model using CRISPR/Cas9 genome editing. Exon 3 of the Taf7l gene was targeted. A founder was generated possessing a 110 bp deletion within the Taf7l locus, which resulted in a frameshift and the premature appearance of a stop codon. The mutation was effectively transmitted through the germline. Deficits in TAF7L did not adversely affect pregnancy or postnatal survival. However, the Taf7l disruption resulted in male infertility due to compromised testis development and failed sperm production. Mutant germ cells suffer meiotic arrest at late zygotene/early pachynema stages, with defects in sex body formation. This testis phenotype was more pronounced than previously described for the subfertile Taf7l null mouse. We conclude that TAF7L is essential for male germ cell development in the rat.


Assuntos
Sêmen , Espermatogênese , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Feminino , Masculino , Gravidez , Ratos , Diferenciação Celular , Meiose , Sêmen/metabolismo , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Testículo/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
7.
Gene ; 893: 147907, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858745

RESUMO

Long noncoding RNAs (lncRNAs) have recently been proved to be functional in the testis. Tesra, a testis-specific lncRNA, was suggested to activate the transcription of Prss42/Tessp-2, a gene that is involved in meiotic progression, in mouse spermatocytes. To reveal the molecular mechanism underlying the activation, we searched for Tesra-binding proteins by a Ribotrap assay followed by LC-MS/MS analysis and identified polypyrimidine tract binding protein 2 (PTBP2) as a candidate. Analysis of public RNA-seq data and our qRT-PCR results indicated that Ptbp2 mRNA showed an expression pattern similar to the expression patterns of Tesra and Prss42/Tessp-2 during testis development. Moreover, PTBP2 was found to be associated with Tesra in testicular germ cells by RNA immunoprecipitation. To evaluate the effect of PTBP2 on the Prss42/Tessp-2 promoter, we established an in vitro reporter gene assay system in which Tesra expression could be induced by the Tet-on system and thereby Prss42/Tessp-2 promoter activity could be increased. In this system, the Prss42/Tessp-2 promoter activity was significantly decreased by the knockdown of PTBP2. These results suggest that PTBP2 contributes to Prss42/Tessp-2 transcriptional activation by Tesra in spermatocytes. The finding provides a precious example of a molecular mechanism of testis lncRNA functioning in spermatogenesis.


Assuntos
RNA Longo não Codificante , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , RNA Longo não Codificante/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Espermatogênese/fisiologia , Espermatócitos/metabolismo
8.
PLoS Genet ; 19(12): e1011081, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048317

RESUMO

Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.


Assuntos
Sêmen , Espermatogênese , Abelhas/genética , Masculino , Animais , Espermatogênese/genética , Espermátides/metabolismo , Testículo , Espermatócitos/metabolismo , Meiose/genética
9.
Cell Death Dis ; 14(12): 845, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114454

RESUMO

Glutathione synthetase (GSS) catalyzes the final step in the synthesis of glutathione (GSH), a well-established antioxidant. Research on the specific roles of the Gss gene during spermatogenesis remains limited due to the intricate structure of testis. In this study, we identified pachytene spermatocytes as the primary site of GSS expression and generated a mouse model with postnatal deletion of Gss using Stra8-Cre (S8) to investigate the role of GSS in germ cells. The impact of Gss knockout on reducing male fertility is age-dependent and caused by ferroptosis in the testis. The 2-month-old S8/Gss-/- male mice exhibited normal fertility, due to a compensatory increase in GPX4, which prevented the accumulation of ROS. With aging, there was a decline in GPX4 and an increase in ALOX15 levels observed in 8-month-old S8/Gss-/- mice, resulting in the accumulation of ROS, lipid peroxidation, and ultimately testicular ferroptosis. We found that testicular ferroptosis did not affect spermatogonia, but caused meiosis disruption and acrosome heterotopia. Then the resulting aberrant sperm showed lower concentration and abnormal morphology, leading to reduced fertility. Furthermore, these injuries could be functionally rescued by inhibiting ferroptosis through intraperitoneal injection of GSH or Fer-1. In summary, Gss in germ cells play a crucial role in the resistance to oxidative stress injury in aged mice. Our findings deepen the understanding of ferroptosis during spermatogenesis and suggest that inhibiting ferroptosis may be a potential strategy for the treatment of male infertility.


Assuntos
Ferroptose , Glutationa Sintase , Infertilidade Masculina , Testículo , Glutationa Sintase/deficiência , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Espermatócitos/metabolismo , Infertilidade Masculina/genética , Testículo/enzimologia , Testículo/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Ferroptose/genética , Técnicas de Inativação de Genes , Células Germinativas/citologia , Meiose/genética , Espermatogênese/genética , Acrossomo/patologia , Autofagia/genética , Masculino , Feminino , Animais , Camundongos , Fatores Etários
10.
Elife ; 122023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032818

RESUMO

Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.


Assuntos
Drosophila , Epigenoma , Masculino , Animais , Drosophila/genética , Cromossomo X/genética , Cromossomo X/metabolismo , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Espermatócitos/metabolismo
11.
PLoS One ; 18(11): e0294766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011087

RESUMO

Wildlife is subject to various sources of pollution, including ionizing radiation. Adverse effects can impact the survival, growth, or reproduction of organisms, later affecting population dynamics. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help to comprehend species-specific differences in radiosensitivity. From our previous studies, we found that decrease in reproduction is life stage dependent in the roundworm Caenorhabditis elegans, possibly resulting from an accumulation of damages during germ cell development and gamete differentiation. To go further, we used the same experimental design to assess more precisely the molecular determinants of reproductive toxicity, primarily decreases in gamete number. As before, worms were chronically exposed to 50 mGy·h-1 external gamma ionizing radiation throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). To enable cross species extrapolation, conserved molecular pathways across invertebrates and vertebrates were analysed: apoptosis and MAP kinase Ras/ERK (MPK-1), both involved in reproduction and stress responses. Our results showed that these pathways are life-stage dependent, resulting from an accumulation of damages upon chronic exposure to IR throughout the life development. The Ras/ERK pathway was activated in our conditions in the pachytene region of the gonad where it regulates cell fate including apoptosis, but not in the ovulation zone, where it controls oocyte maturation and ovulation. Additionally, assessment of germ cell proliferation via Ras/ERK pathway showed no effect. Finally, a functional analysis of apoptosis revealed that while the decrease of the ovulation rate is caused by DNA-damaged induced apoptosis, this process does not occur in spermatocytes. Thus, sperm decrease seems to be mediated via another mechanism, probably a decrease in germ cell proliferation speed that needs further investigation to better characterize sex-specific responses to IR exposure. These results are of main importance to describe radio-induced reprotoxic effects and contribute as weight of evidence for the AOP #396 "Deposition of ionizing energy leads to population decline via impaired meiosis".


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Feminino , Animais , Masculino , Caenorhabditis elegans/metabolismo , Espermatócitos/metabolismo , Sêmen/metabolismo , Oócitos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
12.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37882771

RESUMO

During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8 h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus, a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.


Assuntos
Proteínas de Drosophila , Meiose , Animais , Masculino , Meiose/genética , Espermatogênese/fisiologia , Prófase , Mitose , Espermatócitos/metabolismo , Drosophila/genética , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Drosophila/metabolismo
13.
Commun Biol ; 6(1): 1012, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798322

RESUMO

Caseinolytic protease proteolytic subunit (ClpP) and caseinolytic protease X (ClpX) are mitochondrial matrix peptidases that activate mitochondrial unfolded protein response to maintain protein homeostasis in the mitochondria. However, the role of ClpP and ClpX in spermatogenesis remains largely unknown. In this study, we demonstrated the importance of ClpP/ClpX for meiosis and spermatogenesis with two conditional knockout (cKO) mouse models. We found that ClpP/ClpX deficiency reduced mitochondrial functions and quantity in spermatocytes, affected energy supply during meiosis and attenuated zygotene-pachytene transformation of the male germ cells. The dysregulated spermatocytes finally underwent apoptosis resulting in decreased testicular size and vacuolar structures within the seminiferous tubules. We found mTORC1 pathway was over-activated after deletion of ClpP/ClpX in spermatocytes. Long-term inhibition of the mTORC1 signaling via rapamycin treatment in vivo partially rescue spermatogenesis. The data reveal the critical roles of ClpP and ClpX in regulating meiosis and spermatogenesis.


Assuntos
Endopeptidase Clp , Mitocôndrias , Peptídeo Hidrolases , Animais , Masculino , Camundongos , Mitocôndrias/metabolismo , Peptídeo Hidrolases/metabolismo , Serina Endopeptidases/metabolismo , Espermatócitos/metabolismo , Espermatogênese , Endopeptidase Clp/metabolismo
14.
Reproduction ; 166(6): 437-450, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801077

RESUMO

In brief: A new allele of the senataxin gene Setxspcar3 causes meiotic arrest of spermatocytes with aberrant DNA damage and accumulation of R-loops. Abstract: An unbiased screen for discovering novel mouse genes for fertility identified the spcar3, spermatocyte arrest 3, mutant phenotype. The spcar3 mutation identified a new allele of the Setx gene, encoding senataxin, a DNA/RNA helicase that regulates transcription termination by resolving DNA/RNA hybrid R-loop structures. The Setxspcar3 mutant mice exhibit male infertility and female subfertility. Histology of the Setxspcar3 mutant testes revealed the absence of spermatids and mature spermatozoa in the seminiferous tubules. Cytological analysis of chromosome preparations of the Setxspcar3 mutant spermatocytes revealed normal synapsis, but aberrant DNA damage in the autosomes, defective formation of the sex body, and arrest of meiosis in mid-prophase. Additionally, Setxspcar3 testicular cells exhibit abnormal accumulation of R-loops. Transient expression assays identified regions of the senataxin protein required for sub-nuclear localization. Together, these results not only confirm that senataxin is required for normal meiosis and spermatogenesis but also provide a new resource for the determination of its role in maintaining R-loop formation and genome integrity.


Assuntos
Infertilidade Masculina , RNA , Humanos , Animais , Masculino , Feminino , Camundongos , Alelos , Espermatogênese/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Espermatócitos/metabolismo , Meiose/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , DNA
15.
Reprod Fertil Dev ; 35(14): 641-660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717581

RESUMO

Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.


Assuntos
Caderinas , Testículo , Masculino , Animais , Testículo/metabolismo , Caderinas/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Espermatócitos/metabolismo
16.
Hum Exp Toxicol ; 42: 9603271231188293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37550604

RESUMO

Background: Baked carbohydrate-rich foods are the main source of acrylamide (AA) in the general population and are widely consumed by teenagers. Considering the crucial development of the reproductive system during puberty, the health risks posed by AA in adolescent males have raised public concern.Methods: In this study, we exposed 3-week-old male pubertal mice to AA for 4 weeks to evaluate its effect on spermatogenesis using computer-assisted sperm analysis (CASA) and historical analysis. Flow cytometric analysis and meiocyte spreading assay were conducted to assess meiosis in mice. The expression of meiosis-related proteins and double-strand break (DSB) proteins were evaluated by immunoblot analyses. Additionally, isolated spermatocytes were used to explore the role of resveratrol in AA-induced damages of meiosis.Results: Our results showed that AA decreased the testicular and epididymal indexes, reduced sperm count and motility, and induced morphological disruption of the testes in pubertal mice. Subsequent meiotic analysis revealed that AA increased the proportion of 4C spermatocytes and decreased the proportion of 1C spermatids. The expression levels of meiosis-related proteins (SYCP3, Cyclin A1 and CDK2) were downregulated, and signaling proteins (γH2AX, p-CHK2 and p-ATM) expression levels were upregulated in AA-treated mice testes. Similar expression patterns were observed in primary spermatocytes treated with AA and these effects were reversed significantly by resveratrol.Conclusions: Our results indicate that AA induces meiotic arrest via persistent activation of DSBs, which may contribute to AA-compromised spermatogenesis. Resveratrol could serve as a potential therapeutic agent against AA-induced meiotic toxicity. These data highlight the importance of natural product supplementation for treating AA-related reproductive toxicity.


Assuntos
Quebras de DNA de Cadeia Dupla , Espermatócitos , Humanos , Animais , Masculino , Camundongos , Adolescente , Espermatócitos/metabolismo , Resveratrol/farmacologia , Sêmen , Meiose , Acrilamidas , DNA/metabolismo
17.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37401420

RESUMO

Valosin-containing protein (VCP) binds and extracts ubiquitylated cargo to regulate protein homeostasis. VCP has been studied primarily in aging and disease contexts, but it also affects germline development. However, the precise molecular functions of VCP in the germline, particularly in males, are poorly understood. Using the Drosophila male germline as a model system, we find that VCP translocates from the cytosol to the nucleus as germ cells transition into the meiotic spermatocyte stage. Importantly, nuclear translocation of VCP appears to be one crucial event stimulated by testis-specific TBP-associated factors (tTAFs) to drive spermatocyte differentiation. VCP promotes the expression of several tTAF-target genes, and VCP knockdown, like tTAF loss of function, causes cells to arrest in early meiotic stages. At a molecular level, VCP activity supports spermatocyte gene expression by downregulating a repressive histone modification, mono-ubiquitylated H2A (H2Aub), during meiosis. Remarkably, experimentally blocking H2Aub in VCP-RNAi testes is sufficient to overcome the meiotic-arrest phenotype and to promote development through the spermatocyte stage. Collectively, our data highlight VCP as a downstream effector of tTAFs that downregulates H2Aub to facilitate meiotic progression.


Assuntos
Drosophila , Espermatócitos , Animais , Masculino , Espermatócitos/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Diferenciação Celular/genética , Drosophila/genética , Drosophila/metabolismo , Testículo/metabolismo , Expressão Gênica , Espermatogênese/genética , Meiose/genética
18.
PLoS Genet ; 19(6): e1010797, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37307272

RESUMO

Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.


Assuntos
Retroelementos , Ribonucleoproteínas , Humanos , Masculino , Camundongos , Animais , Retroelementos/genética , Ribonucleoproteínas/genética , RNA de Interação com Piwi , Espermatócitos/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
19.
Nucleic Acids Res ; 51(14): 7357-7375, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37378420

RESUMO

DNA-RNA hybrids play various roles in many physiological progresses, but how this chromatin structure is dynamically regulated during spermatogenesis remains largely unknown. Here, we show that germ cell-specific knockout of Rnaseh1, a specialized enzyme that degrades the RNA within DNA-RNA hybrids, impairs spermatogenesis and causes male infertility. Notably, Rnaseh1 knockout results in incomplete DNA repair and meiotic prophase I arrest. These defects arise from the altered RAD51 and DMC1 recruitment in zygotene spermatocytes. Furthermore, single-molecule experiments show that RNase H1 promotes recombinase recruitment to DNA by degrading RNA within DNA-RNA hybrids and allows nucleoprotein filaments formation. Overall, we uncover a function of RNase H1 in meiotic recombination, during which it processes DNA-RNA hybrids and facilitates recombinase recruitment.


Assuntos
Meiose , Ribonuclease H , Humanos , Masculino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/genética , DNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinases/genética , Espermatócitos/metabolismo , Ribonuclease H/metabolismo
20.
Toxicol Sci ; 194(2): 167-177, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37261864

RESUMO

In this study, we examined the mechanisms of cadmium exposure-induced endoplasmic reticulum (ER) stress response and apoptosis in spermatocytes. Responses to cadmium toxicity were investigated using spermatocytes overexpressing p50ATF6, ATF4, and spliced XBP1s, belonging to the 3 unfolded protein response pathways. The ER stress and apoptosis response to cadmium were most strongly stimulated through the activating transcription factor 6 (ATF6) pathway; in contrast, siRNA-induced inhibition of protein expression could reduce apoptosis under stressful conditions. An in vivo experiment using mice confirmed that upregulation of p50ATF6 in the testis increased apoptosis in response to cadmium exposure. Further, when confirming the correlation between ER stress and MAPK in cadmium toxicity, p38 MAPK phosphorylation was strongly regulated by p50ATF6; p-p38 also mediated the activity of p50ATF6. Overall, these findings suggest that modulating the activity of p38 MAPK and p50ATF6 in cadmium exposure-induced toxicity can be considered a potential strategy to treat infertility.


Assuntos
Fator 6 Ativador da Transcrição , Cádmio , Masculino , Animais , Camundongos , Cádmio/toxicidade , Fator 6 Ativador da Transcrição/metabolismo , Espermatócitos/metabolismo , Estresse do Retículo Endoplasmático , Apoptose/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...